If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-2X-1739=0
a = 1; b = -2; c = -1739;
Δ = b2-4ac
Δ = -22-4·1·(-1739)
Δ = 6960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6960}=\sqrt{16*435}=\sqrt{16}*\sqrt{435}=4\sqrt{435}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{435}}{2*1}=\frac{2-4\sqrt{435}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{435}}{2*1}=\frac{2+4\sqrt{435}}{2} $
| x+3/x+1=3x+5/6x-1 | | 5+3x-40-2x=0 | | X^2-x-1984=0 | | x-12=1/2 | | (7x-4)/(5x+2)-2=10 | | 6x=2(12-x) | | 1/(x-8)=5 | | 3/4-4/5x=1 | | 11x-8=6x | | 1/(x+5)=-8 | | 2(3x)+5)-x=35 | | -4x+15+6x=7 | | x+8=12x+16 | | 5x4+4=4-4+3 | | -3x/3+9=6 | | 2x+180=2x+190 | | 6-8(2x+3)=4 | | 17y-8=1314 | | 3a+13=5a-7 | | 7^(-x-6)=8^(6x) | | 7x-(4x+8)=13 | | 5(4x+11)+3(2x+4)=3 | | 150=1/2a(25) | | 3^3x+1=9(2^x+3) | | 1.3p=481 | | 2x-x=1500000 | | -3c+13=-17 | | 340=140+2w | | R(x)=-0.001x^2+3x | | 2.5x-5+5+3x+8=19.5 | | (3/y+4)+(6/7y)+(12/y^2+4y)=0 | | x6+7=12 |